Supporting Information for

Gender brilliance stereotype emerges early and predicts children's motivation in

South Korea

Table S1. The questions and scale used in the screener phase in Experiments 1 and 2 (Each option's corresponding scale is displayed in parentheses).

"Smart" screener questions (6 items):

[four relevant questions]

- This child can always answer even the hardest questions from the teacher.
- This child learns things really fast.
- This child can solve very difficult puzzles.
- This child figures things out really quickly.
(after each question) Is this child smart (thumbs up), not smart (thumbs down), or are you not sure (puzzled look)?
[two irrelevant questions]
- This child watches really funny cartoons.
- This child exercises all the time.
(after each question) Is this child smart (thumbs up), not smart (thumbs down), or are you not sure (puzzled look)?

"Nice" screener question:

[four relevant questions]

- This child likes to help other people.
- This child always shares their toys with other children.
- This child tries to make other children feel better when they are sad.
- This child likes to give hugs to family and friends.

Is this child nice (thumbs up), not nice (thumbs down), or are you not sure (puzzled look)?
[two irrelevant questions]

- This child plays on a swing.
- This child likes to listen to music.

Is this child nice (thumbs up), not nice (thumbs down), or are you not sure (puzzled look)?
Scoring: Mean of 6 items ($1=$ correct answer; $0=$ incorrect answer; "smart/nice" to the four relevant questions, and "not sure" and "not smart/not nice" to the two irrelevant questions were coded as correct.)

Scale used in the screener phase:

Table S2. The questions used in the grade task in Experiments 1 and 2. The first two questions were presented with 4 pictures of unfamiliar Asian children (Experiment 1) or White children (Experiment 2) including 2 boys and 2 girls. Participants were then asked the same 2 questions again, except this time they had to choose between 2 verbally presented options ("A boy or a girl?") without viewing pictures.
(1) Who do you think will get the highest score in school/kindergarten?
(2) Who do you think will be the first place in their class?
(3) Who do you think will get the highest score in school/kindergarten?

A boy or a girl?
(4) Who do you think will be the first place in their class?

A boy or a girl?

An example of the pictures used in the first two questions:

Table S3. Children's own-gender brilliance scores by tasks in Experiment 1 (standard deviations in parentheses).

Age group	Gender	Story task	Guessing task
5	Boys	$0.78(0.31)$	$0.54(0.24)$
	Girls	$0.66(0.40)$	$0.60(0.22)$
6	Boys	$0.78(0.36)$	$0.64(0.21)$
	Girls	$0.66(0.35)$	$0.56(0.25)$
7	Boys	$0.81(0.25)$	$0.70(0.16)$
	Girls	$0.59(0.38)$	$0.54(0.14)$

Note. We submitted children's own-gender brilliance scores obtained from each task (the story task or the guessing task) to a linear regression model with participant gender, participant age, and their interaction as factors. For the story task, the analysis revealed a significant main effect of gender, $B=$ $.08, S E=.03, t=2.24, p=.028$. Neither the main effect of participant age, $B=-.01, S E=.04, t=-$ $0.18, p=.855$, nor the interaction, $B=.02, S E=.04, t=0.55, p=.585$, was significant. For the guessing task, the analysis found a significant interaction between participant gender and participant age, $B=$ $.05, S E=.03, t=2.13, p=.035$. Neither the main effect of participant gender, $B=.03, S E=.02, t=$ $1.37, p=.174$, nor the main effect of participant age, $B=.02, S E=.03, t=0.91, p=.363$, was significant.

Table S4. Children's own-gender brilliance scores by tasks in Experiment 2 (standard deviations in parentheses).

Age group	Gender	Story task	Guessing task
5	Boys	$0.78(0.31)$	$0.71(0.27)$
	Girls	$0.72(0.36)$	$0.66(0.25)$
6	Boys	$0.84(0.24)$	$0.69(0.20)$
	Girls	$0.72(0.31)$	$0.63(0.19)$
7	Boys	$0.72(0.31)$	$0.68(0.14)$
	Girls	$0.44(0.36)$	$0.56(0.19)$

Note. We submitted children's own-gender brilliance scores obtained from each task (the story task or the guessing task) to a linear regression model with participant gender, participant age, and their interaction as factors. For the story task, the analysis revealed a significant main effect of participant gender, $B=.08, S E=.03, t=2.38, p=.020$, and a main effect of participant age, $B=-.09, S E=.04, t$ $=-2.14, p=.035$. However, the interaction was not significant, $B=.05, S E=.04, t=1.36, p=.178$. For the guessing task, the analysis found a marginally significant main effect of participant gender, B $=.04, S E=.02, t=1.79, p=.077$. Neither the main effect of participant age, $B=-.03, S E=.03, t=-$ $1.21, p=.230$, nor its interaction with participant gender, $B=.02, S E=.03, t=0.60, p=.547$, was significant.

Table S5. The four questions used to assess children's interests in Experiment 3 (Each option's numerical score is displayed in parentheses).
(1) Imagine the modi/papu game is right in front of you. Would you want to play the modi/papu game, or would you not want to play it?
[if "want to play"] Then, how much do you want to play modi/papu game?
Would you sort of want to play it $(=4)$, want to play it $(=5)$, or really want to play it $(=6)$?
[if "not want to play"] Then, how much do you not want to play modi/papu game?
Would you sort of not want to play it $(=3)$, not want to play it $(=2)$, or really not want to play it (=1)?
(2) Do you like the modi/papu game, or do you not like it?
[if "like it"] Then, how much do you like modi/papu game?
Would you sort of like it $(=4)$, like it $(=5)$, or really like it $(=6)$?
[if "not like it"] Then, how much do you not like modi/papu game?
Would you sort of not like it $(=3)$, not like it $(=2)$, or really not like it $(=1)$?
(3) Imagine you are playing the modi/papu game. Does playing modi/papu game make you happy or sad?
[if "happy"] Then, how much playing modi/papu game makes you happy?
Does it make you sort of happy $(=4)$, happy $(=5)$, or really happy $(=6)$?
[if "sad"] Then, how much playing modi/papu game makes you sad?
Does it make you sort of sad (=3), sad (=2), or really sad (= 1)?
(4) If you can do something tomorrow, would you play the modi/papu game (=1) or would you do something else $(=0)$?

Figure S1. An example of adult stimuli used in the gender-neutral story task in Experiment 1.

Figure S2. Boys' (blue) and girls' (red) own-gender grade scores in Experiments 1 and 2 by age group (5- vs. 6- vs. 7-year-olds). The error bars represent ± 1 SE.

Figure S3. The gender difference in 7-year-olds' interests in the smart game was mediated by their own-gender brilliance scores, indirect effect $=.47,95 \% \mathrm{CI}=[.24, .74]$. Unstandardized coefficients are depicted. $* p<.05,{ }^{* * *} p<.001$

Figure S4. Children's own-gender brilliance scores in all three experiments by institutions they are currently attending (Kindergarten vs. Elementary school). The error bars represent $\pm 1 S E$. There was no significant gender difference in kindergartners' own-gender brilliance scores, Exp 1: $F(1,48)=$ $0.34, p=.565 ; \operatorname{Exp} 2: F(1,59)=1.82, p=.183 ; \operatorname{Exp} 3: F(1,28)=0.29, p=.597$. In contrast, there was a significant gender difference in elementary schoolers' own-gender brilliance scores, Exp 1: $F(1,44)$ $=7.58, p=.009 ; \operatorname{Exp} 2: F(1,33)=6.45, p=.016 ; \operatorname{Exp} 3: F(1,48)=5.25, p=.026$.

Figure S5. Children's smart game interest scores in Experiment 3 by institutions they are currently attending (Kindergarten vs. Elementary school). The error bars represent $\pm 1 S E$. There was a significant gender difference in elementary schoolers, $F(1,48)=8.06, p=.007$, but not in kindergarteners: $F(1,28)=0.39, p=.536$.

